
Victor William Guillemin mathematician
Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea--transversality--the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main results. In this way, they present intelligent treatments of important theorems, such as the Lefschetz fixed-point theorem, the Poincarøƒ-Hopf index theorem, and Stokes theorem. The book has a wealth of exercises of various types. Some are routine explorations of the main material. In others, the students are guided step-by-step through proofs of fundamental results, such as the Jordan-Br
"Clear and coherent … One of the most exciting aspects of the book is the author's account of how the consequences and implications of the breakthroughs in quantum mechanics challenged the mechanistic, deterministic philosophy fostered by classical science." — The Science TeacherWritten by a respected Harvard physicist who did his doctoral work in Munich among many of the founding fathers of quantum mechanics, this introductory account of the evolution of quantum physics also explores the subject's philosophical implications. Beginning with brief background sketches, the author offers an absorbing narrative of the discovery of the principles of quantum mechanics as well as an assessment of their validity and significance.The opening chapters trace the development of physics from antiquity onward, chronicling the origins of quantum mechanics and the ways in which quantum theory was used to address previously unsolved problems and to interpret observable atomic phenomena. Succeeding chapters are devoted to matters at the forefront of research pertaining to elementary particles, and the text concludes with a look at the old and new concepts of physical science and their relationship to issues of philosophy and religion — including considerations of causality, determinism, and free will. Includes 36 black-and-white figures, 12 halftones, five tables, and a Glossary of Scientific Terms.
Symplectic geometry is very useful for formulating clearly and concisely problems in classical physics and also for understanding the link between classical problems and their quantum counterparts. It is thus a subject of interest to both mathematicians and physicists, though they have approached the subject from different viewpoints. This is the first book that attempts to reconcile these approaches. The authors use the uncluttered, coordinate-free approach to symplectic geometry and classical mechanics that has been developed by mathematicians over the course of the past thirty years, but at the same time apply the apparatus to a great number of concrete problems. Some of the themes emphasized in the book include the pivotal role of completely integrable systems, the importance of symmetries, analogies between classical dynamics and optics, the importance of symplectic tools in classical variational theory, symplectic features of classical field theories, and the principle of general covariance.
Symplectic geometry and the theory of Fourier integral operators are modern manifestations of themes that have occupied a central position in mathematical thought for the past three hundred years--the relations between the wave and the corpuscular theories of light. The purpose of this book is to develop these themes, and present some of the recent advances, using the language of differential geometry as a unifying influence. Chapters included in this book Chapter I, Introduction. The method of stationary phase; Appendix I, Morse's lemma and some generalizations; Chapter II, Differential operators and asymptotic solutions; Chapter III, Geometrical optics; Chapter IV, Symplectic geometry; Chapter V, Geometric quantization; Chapter VI, Geometric aspects of distribution; Appendix to Chapter VI, The Plancherel formula for the complex semisimple Lie groups; Chapter VII, Compound Asymptotics; Appendix II, Various functorial constructions; Index.
This book discusses the equivariant cohomology theory of differentiable manifolds. Although this subject has gained great popularity since the early 1980's, it has not before been the subject of a monograph. It covers almost all important aspects of the subject The authors are key authorities in this field.
by Victor W. Guillemin
This research monograph presents many new results in a rapidly developing area of great current interest. Guillemin, Ginzburg, and Karshon show that the underlying topological thread in the computation of invariants of G-manifolds is a consequence of a linearization theorem involving equivariant cobordisms. The book incorporates a novel approach and showcases exciting new research. During the last 20 years, ``localization'' has been one of the dominant themes in the area of equivariant differential geometry. Typical results are the Duistermaat-Heckman theory, the Berline-Vergne-Atiyah-Bott localization theorem in equivariant de Rham theory, and the ``quantization commutes with reduction'' theorem and its various corollaries. To formulate the idea that these theorems are all consequences of a single result involving equivariant cobordisms, the authors have developed a cobordism theory that allows the objects to be non-compact manifolds. A key ingredient in this non-compact cobordism is an equivariant-geometrical object which they call an ``abstract moment map''. This is a natural and important generalization of the notion of a moment map occurring in the theory of Hamiltonian dynamics. The book contains a number of appendices that include introductions to proper group-actions on manifolds, equivariant cohomology, Spin${^\mathrm{c}}$-structures, and stable complex structures. It is geared toward graduate students and research mathematicians interested in differential geometry. It is also suitable for topologists, Lie theorists, combinatorists, and theoretical physicists. Prerequisite is some expertise in calculus on manifolds and basic graduate-level differential geometry.
by Victor W. Guillemin
The action of a compact Lie group, G , on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytopes, a convex polyhedron which sits inside the dual of the Lie algebra of G . One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. This book is addressed to researchers and can be used as a semester text.
by Victor W. Guillemin
This is a monograph on convexity properties of moment mappings in symplectic geometry. The fundamental result in this subject is the Kirwan convexity theorem, which describes the image of a moment map in terms of linear inequalities. This theorem bears a close relationship to perplexing old puzzles from linear algebra, such as the Horn problem on sums of Hermitian matrices, on which considerable progress has been made in recent years following a breakthrough by Klyachko. The book presents a simple local model for the moment polytope, valid in the ""generic"" case, and an elementary Morse-theoretic argument deriving the Klyachko inequalities and some of their generalizations. It reviews various infinite-dimensional manifestations of moment convexity, such as the Kostant type theorems for orbits of a loop group (due to Atiyah and Pressley) or a symplectomorphism group (due to Bloch, Flaschka and Ratiu). Finally, it gives an account of a new convexity theorem for moment map images of orbits of a Borel subgroup of a complex reductive group acting on a Kahler manifold, based on potential-theoretic methods in several complex variables. This volume is recommended for independent study and is suitable for graduate students and researchers interested in symplectic geometry, algebraic geometry, and geometric combinatorics.
by Victor W. Guillemin
Multiplicity diagrams can be viewed as schemes for describing the phenomenon of "symmetry breaking" in quantum physics. The subject of this book is the multiplicity diagrams associated with the classical groups U(n), O(n), etc. It presents such topics as asymptotic distributions of multiplicities, hierarchical patterns in multiplicity diagrams, lacunae, and the multiplicity diagrams of the rank 2 and rank 3 groups. The authors take a novel approach, using the techniques of symplectic geometry. The book develops in detail some themes which were touched on in the highly successful Symplectic Techniques in Physics by V. Guillemin and S. Sternberg (CUP, 1984) , including the geometry of the moment map, the Duistermaat-Heckman theorem, the interplay between coadjoint orbits and representation theory, and quantization. Students and researchers in geometry and mathematical physics will find this book fascinating.
by Victor W. Guillemin
This book is based on the Colloquium Lectures presented by Shlomo Sternberg during the Joint Mathematics Meetings in Louisville, Kentucky in January 1990. The authors delve into the mysterious role that groups, especially Lie groups, play in revealing the laws of nature by focusing on the familiar example of Kepler motion: the motion of a planet under the attraction of the sun according to Kepler's laws. Newton realized that Kepler's second law---equal areas are swept out in equal times---has to do with the fact that the force is directed radially to the sun. Kepler's second law is really the assertion of the conservation of angular momentum, reflecting the rotational symmetry of the system about the origin of the force. In today's language, we would say that the group O(3) (the orthogonal group in three dimensions) is responsible for Kepler's second law. By the end of the nineteenth century, the inverse square law of attraction was seen to have O(4) symmetry (where O(4) acts on a portion of the six-dimensional phase space of the planet). Even larger groups have since been found to be involved in Kepler motion. In quantum mechanics, the example of Kepler motion manifests itself as the hydrogen atom. Exploring this circle of ideas, the first part of the book was written with the general mathematical reader in mind. The remainder of the book is aimed at specialists. It begins with a demonstration that the Kepler problem and the hydrogen atom exhibit O(4) symmetry and that the form of this symmetry determines the inverse square law in classical mechanics and the spectrum of the hydrogen atom in quantum mechanics. The space of regularized elliptical motions of the Kepler problem (also known as the Kepler manifold) plays a central role in this book. The last portion of the book studies the various cosmological models in this same conformal class (and having varying isometry groups) from the viewpoint of projective geometry. The computation of the hydrogen spectrum provides an illustration of the principle that enlarging the phase space can simplify the equations of motion in the classical setting and aid in the quantization problem in the quantum setting. The authors provide a short summary of the homological quantization of constraints and a list of recent applications to many interesting finite-dimensional settings. The book closes with an outline of Kostant's theory, in which a unitary representation is associated to the minimal nilpotent orbit of SO(4,4) and in which electromagnetism and gravitation are unified in a Kaluza-Klein type theory in six dimensions.
by Victor W. Guillemin
Based on a seminar sponsored by the Institute for Advanced Study in 1977-1978, this set of papers introduces micro-local analysis concisely and clearly to mathematicians with an analytical background. The papers treat the theory of microfunctions and applications such as boundary values of elliptic partial differential equations, propagation of singularities in the vicinity of degenerate characteristics, holonomic systems, Feynman integrals from the hyperfunction point of view, and harmonic analysis on Lie groups.
by Victor W. Guillemin
The subject matter of this work is an area of Lorentzian geometry which has not been heretofore much Do there exist Lorentzian manifolds all of whose light-like geodesics are periodic? A surprising fact is that such manifolds exist in abundance in (2 + 1)-dimensions (though in higher dimensions they are quite rare). This book is concerned with the deformation theory of M2,1 (which furnishes almost all the known examples of these objects). It also has a section describing conformal invariants of these objects, the most interesting being the determinant of a two dimensional "Floquet operator," invented by Paneitz and Segal.